Real-time 3D Rendering Primer
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1. Short Computer Graphics
Intro

= Scene Components
» Real-time Rendering Pipeline

= Positioning in 3D
* Transformations and Spaces




Scene Components

» Sharing a lot with cinematography.

» Ascene is made of various components:
» Things to film (the setting)
» Camera
» Lights
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Scene Components
» Similar scene components

» Scene information goes through a “pipeline” that transforms it to a 2D image
displayed on the screen

2D Image




Scene Components: 3D Models

» Geometry ultimately drawn as triangles, accompanied with additional data to
increase detail.




Scene Components: Camera

» An imaginary entity that carries view properties and 2D projection
parameters, including:

» Position

» View direction

» Lens properties
» Projection type
» Clip planes




Scene Components: Lights

» Another imaginary entity that carries lighting method and properties.
» More detail to come in the rendering algorithms section.

Directional light Point light Spot light
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Real-time Rendering Pipeline

» Takes information through a series of steps to generate the final image
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Real-time Rendering Pipeline

» GPU is a big state machine.

» Set drawing states, then issue draw
commands.

» Sample rendering code:

D3DMATERIAL RedMat;
RedMat.Diffuse = RGBA(1,0,0,1);
RedMat.Specular = RGBA(1,1,1,1);
RedMat.SpecularPower = 24_.0;

D3DDevice->SetMaterial (&RedMat) ;
D3DDevice->SetTexture(ClothTexture);

D3DDevice->DrawPrimitive(.. Objectl Draw Info ..
D3DDevice->DrawPrimitive(.. Object2 Draw Info ..

o/ o/

D3DDevice->SetTexture(ConcreteTexture);

D3DDevice->DrawPrimitive(.. Object3 Draw Info ..);




Real-time Rendering Pipeline: Polygon Presentation

» Polygons need to be presented on a screen with a finite number of pixels:
» Rasterization
» Ray tracing (rarely used in real-time applications and games)




Positioning in 3D

» We need to position and orientate models in 3D space while preserving their
structure.

» We can control structure change via scaling, or more advanced calculations
(will be discussed further in the algorithms section).

» Need a framework to represent such transformations.




Transformations and Spaces (1)

» 4x4 transformation matrices offer a very useful framework to move and
orientate 3D models in the world.

» Affine transforms include translation (move), rotation, and scaling.

» They can be expressed in row-major (D3DX) order or column-major
(OpenGL).




Transformations and Spaces (2)

» 3D scenes must establish a global coordinate system convention:
» Usually either left-handed or right-handed

» 3D models, lights, and cameras all rely on this system to locate themselves
In the world, thus it is called: world coordinates.

Left-handed Right-handed
Cartesian Coordinates Cartesian Coordinates

Y Y




Transformations and Spaces (3)

» A matrix can be seen as representing a transform between coordinate
systems (spaces).

» Common sSpace transformations are:
» Local-To-World
» World-To-Camera
» Camera-To-Clip (projection)

» Combine transforms via matrix multiplication (order-dependent!):
» Local-To-World * World-To-Camera = Local-To-Camera
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Transformations and Spaces: World Space

» World space is the reference for all other objects.

» All object positions/orientations are in world coordinates (including cameras
and lights).
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Transformations and Spaces: View Space

» Camera space is centered at the camera's optical center and looks down the
z-axis (either positive or negative).

» Last 3D step before 2D projection.

The red sguare is the screen, losated at 2= 0.




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009




Transformations and Spaces: Projection

» Simulates physical camera lens properties.
» Transforms 3D coordinates to 2D coordinates with Z remap.

» Visible coordinates range is [-1,1] for X and Y, and [0,1] for Z ([0,-1] in
OpenGL).

» One final transform is needed to map [-1,1] to screen coordinates (e.qg,
[0,640]).

— =t
q

L
—l
view frustum

canonical view volume




objesot
hisrarchy

Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Transformations and Spaces: Matrix Recognition

» A common affine transformation matrix is laid out as below.

» It is possible to extract individual scale/rotation/translation information from
such a matrix.




Real-time 3D Computer Graphics
Algorithms

= Modeling and Geometry Manipulation
= Rendering Techniques

* Global Effects

= |[mage Space




Modeling and
Geometry Manipulation

= Billboards
= High-Order Surfaces

= Morphing
= Skinning
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Billboards (cont’d)

» Expand the billboard’s position point to a quad in view space’s up and right
axes:

billboard.vertices.bottomleft = billboard.vertices.bottomright =
billboard.center + billboard.center +
camera.up*(-billboard.height/2) + camera.up*(-billboard.height/2) +
camera.right*(-billboard.width/2); camera.right*(+billboard.width/2);

billboard.vertices.topright = billboard.vertices.topleft =
billboard.center + billboard.center +
camera.up*(+billboard.height/2) + camera.up*(+billboard.height/2) +

camera.right*(+billboard.width/2); camera.right*(-billboard.width/2);




High-Order Surfaces: Bezier Patches

» 3D geometry represented by a parametric surface: Bezier cubic patches.

» Control points guide the surface (convex hull). Surface only passes through
end points.

» Continuous®, infinite resolution, compact representation.

* Continuity on boundaries requires special care.




High-Order Surfaces: Bezier Patches (cont’d)

» A quick look on Bezier curve evaluation:

QU= 33 5 )2, 0)
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High-Order Surfaces: Bezier Patches (cont’d)

» Bezier curves/patches can be evaluated recursively (Paul de Casteljau).
» Acurve can be broken into two other curves of the same degree.

w
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» A game can subdivide until a certain amount of polygons have been
generated.




Geometry Morphing (blending/tweening)

» Similar to the concept of key frames in
traditional 2D animation.

» Key geometry frames, sharing the same B8
topology, vertex count and vertex ordering

» Intermediate frames are generated by
interpolating between two key frames.

» Flexible deformations.

» Can take a lot of memory, especially for
long animations.




Geometry Morphing (blending/tweening), cont’d.

» Done in two methods:

» Blended: The final pose is a blend between two keyframes:

» for (int i=0; i<Mesh.Vertices.Count; i++)
Mesh.Vertices|[i] = Lerp(keyShapel.Vertices[i], keyShape2.Vertices]i], percentage);

» Additive: The final pose is an accumulation of an open number of relative
keyframes (used a lot in facial animation):

» for (int i=0; i<Mesh.Vertices.Count; i++)
Mesh.Vertices[i] = Base.Vertices][i] + Smile.Vertices[i] * SmilePercentage +
Blink.Vertices[i]  * BlinkPercentage +
Surprise.Vertices|[i] * SurprisePercentage;
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Skinning: Matrix Palette

» A skinned vertex can be attached to more than one /nfluencing bone at the
same time using different weights, which in turn should all sum up to 1.0.

» For practical reasons, the maximum number of influences is usually
assumed to be 3 or 4 (mostly 3).

» The limited number of GPU constant registers may
prevent fitting all bone matrices to draw the character
in a single batch.

» Normals, tangents and binormals must be skinned
as well.




Skinning: Sample Code

#define MAX_ INFLUENCES 4
struct SkinnedVertex

float3 boneSpacePos;

float3 worldSpacePos;

int control lingBones|[MAX_ INFLUENCES];
float boneWeights[MAX INFLUENCES];

}

for each (Vertex v in mesh._Vertices)

v.wor ldSpacePos = float3(0,0,0);
for (b=0 to MAX_ INFLUENCES)

Bone bone = mesh.Bones[v.controllingBones|b]];
v.worldSpacePos += transform(v.boneSpacePos,bone.llocalToWorldMatrix) *
v.boneWeights|b];




Rendering Techniques

= Materials and Lighting

= Texture Mapping

* Fog

* Translucency and Transparency
= HDR Rendering




Materials & Lighting

» Materials are identified based on their
surface properties (e.g.
smoothness/roughness) and the way they
interact with light (how we perceive them).

» Real-time rendering uses simplified formulas
that empirically match a certain material’s
properties (simplification of BRDFs).

£
» Some key models: Lambert, Phong (or _ oy
Blinn), Strauss, Cook-Torrance, Oren-Nayar, el e
Anisotropic, P ¢. David Briggs, 2007
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Materials & Lighting: Lambert Shading

» Simulates micro-roughness on surfaces = light diffusion.

» Simplified to the angular relationship between surface normal and incoming
light direction.

» shade = cos(6) lﬁ
or by getting rid of the trigonometry stuff: ' \
shade = N.L A
\
» Usually referred to as 7he Diffuse Component. \
\ i

on a surface
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Materials & Lighting: Phong/Blinn Shading

» Calculated as:
specular = (R.V)" (Phong)
where: R = 2.0x(N.L)xN — L

S
» Calculating Ris slightly heavy. But NH seems close enough:
specular = (N.H)" (Blinn)

— Blinn-Phong




Materials & Lighting: Ambient

» Simulates light scattering in the environment, which results in surfaces lit by
indirect light rays.

» Overly simplistic representation:
Add a constant color!

» The formula thus far is:

I, = kaia+ ) (ka(L - N)ia + ky(R-V)%,).

lights




Materials & Lighting: Light Types

» The type of light dictates how its direction and color are calculated during
lighting.

» Common light types:
» Ambient
» Directional
» Point
» Spot

» Extensions:
» Hemisphere
» Image-based
» Spherical harmonics




Materials & Lighting: Directional Lights

» Single color.

» Parallel rays lighting every point in the whole scene equally.
» Has direction, but no position.

» Useful for simulating sun light.

» Simply represented by the calculation clamp(N.L).




Materials & Lighting: Point Lights

» Single color.

» Rays radiating equally in every direction.

» Has position, but no direction.

» Attenuation based on point distance from light.
» Sample Calculation:

Tfloat3 RangedDistance = (LightPosition - PointPosition) / LightRange;
float Attenuation = saturate(1.0f - lenSqg(RangedDistance));
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Materials & Lighting: Hemispherical Lighting

» A sphere surrounds the object.
» Light color is a function of polar angles.
» Can be simulated through “many” primitive lights too.

P [=] E3

i)
Wie




Materials & Lighting: Image-based Lighting

» Atextured sphere/cube surrounds the object.
» Light color is a function of polar angles.

» Image reflects the environment of the object.
» Positionless, direction-based.




Materials & Lighting: Spherical Harmonics (1)

» Precompute lighting response for geometry points over a surrounding
sphere.

» Include lighting and visibility calculated by an advanced renderer.
» Calculations made per-vertex or per-texel.

Tp(S) — Vp(S)HNp (5)

T
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Texture Mapping

» Adding color detail to geometry with less memory.

» Color information taken from an image, and rasterized to cover triangle
areas.

» Textures on a triangle are addressed via normalized UV values stored in
each vertex.

(1.0)




Texture Mapping (cont’d)

» Textures can be 1D, 2D, 3D or cube (six faces).

» They can contain stored images, or be procedurally
evaluated at runtime (e.g. noise, fractals).

» Hardware imposes certain restrictions in terms of
capability/performance (e.g. dimensions and format).

» Sampling an image texture at (U,V):
X = (Int)(U * texWidth);
y = (int)(V * texHeight);
color = texMem[y * texHeight + X];

» Orin HLSL:
color = tex2D(texSampler,texCoord);

\




Texture Mapping: UVW Mapping/Projection

» Assigning UV/UVW values to vertices depends on the required results.

» Some simple procedural UV mapping methods: o
» Spherical

» Cylindrical l
» Planar

» In general, they are hand-authored and stored in the \
mesh’s vertices. .8

» Planar UV generation example (XZ plane): : Y T

for each (Vertex vertex In mesh.Vertices)

{ I I James CouchH
vertex.texU = vertex.posX * scaleU + offsetU; — Adre/Cauhaom

}

vertex.texV = vertex.posZ * scaleV + offsetV;

TEXTURE




Texture Mapping: Addressing

» What should happen when the value of U or V is outside of [0,1] ?
» Wrap (Repeat)
»  Mirror
» Clamp
» Border

» Setting texture addressing mode in HLSL.:
sampler mySampler = sampler_state

{
Texture = <g_Texture>;
AddressU = Wrap;
AddressV = Clamp;
AddressW = Mirror;
}s
e K SR X
?" 2 abbﬁr:‘”fﬁ ly _“"E . ”-_?.TJEL
E E E %’3&% A }*ghhi | | ?a_.-.-.
wh Sy O Gl e X
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Texture Mapping: Mipmaps

» When sampling the texture for distant objects, artifacts and inefficiencies

occur due to undersampling and cache-misses (e.g. reading from a 512x512
Image to cover only 25 pixels).

» Mipmaps are a continuous series of half-sized images associated with the
texture (pyramid).

7/ Last

" submap
' is only
' one texel.

A2x32 16x16 8x8 4x4 2x2

- Each s=ubmap i=

' half the size of
the previous one.

""'--.:::_.__ / Full resolution texture map.




Texture Mapping: Mipmaps (cont’d)

» GPU picks the suitable mipmap to texture the area in question depending on
difference of UV values between pixels.

» Mipmaps are usually auto-generated by downsampling the full-resolution
texture sequentially, but they can contain totally different images too (for
special effects).

£
o B -\-‘-‘h .
Vardware

quide !

Colored Mipmaps Bilinear
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Texture Mapping: Filtering (cont’d)

» Filtering can be specified for each case differently:
» Magnification
» Minification
» Mipmapping

» Common filtering settings:
» Point: Point Min/Mag/Mip
» Bilinear: Linear Min/Mag, Point Mip.
» Trilinear: Linear Min/Mag/Mip.

» Setting texture filtering mode in HLSL.:
sampler mySampler =
sampler_state

{
Texture = <g_Texture>;
MagFi1lter = Linear;
MinFilter = Linear;
MipFilter = Point;
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Texture Mapping: Bump Maps

» Bump maps (a.k.a height maps) provide detail to geometry normals by
specifying values of normal perturbation.

» Normal at every texel is found by determining slope angle in relationship with
surrounding texels.

» Bump map normal is added to surface normal.
» Bump map is stored in a single color channel.
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Texture Mapping: Normal Maps

» Normal maps provide detail to geometry normals by specifying normals at
each texel.

» Normals in a normal map replace normals from vertices.

» Information is 3D and needs 3 channels (more storage than bump maps).

» Can be stored in object-space or tangent-space.

» Direction values range in [-1,1] for each axis. Remapped to [0,1] for storage.
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Texture Mapping: Per-pixel Lighting

» Normals in a normal map are commonly stored in tangent-space (the space
of the surface the texture is mapped on).

» Must transform normals to same space as light: need a object-to-tangent
space matrix (Tangent | Binormal | Normal matrix):

Texture coords: Texture coords:
[0, 1] [1,1]

Texture coord

— S tangent
—— T tangent (hinormal)
— N0|-n-|a|




Texture Mapping: Per-pixel Lighting (cont’d)

>
4

Code example (transform light to tangent space):
In the vertex shader:

// Calculate the light vector (vLightPosition is In object space)
vLightVector = vLightPosition - position.xyz;

// Transform the light vector from object space into tangent space
Tloat3x3 TBNMatrix = Float3x3(vTangent, vBinormal, vNormal);
vLightVector.xyz = mul(TBNMatrix, vLightVector);

In the pixel shader:

// Normalize the light vector after linear interpolation
vLightVector = normalize(vLightVector);

// Since the normals in the normal map are iIn

// the (color) range [0, 1], we need to uncompress them to "real

// normal (vector) directions.

// Decompress vector ([0, 1] -> [-1, 1])
T

-FanfQ \lI\InIf'nnﬁlf‘nlnr = +aoav2Dlnnrmal Tavtil norm

0.5F);

1 RVAALY VINUIL THIAAR VU RUVUI — LL;/\LLJ\IIUIIIIMI I'U/\ u

float3 vNormal = 2.0F * (vNormalColor
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Texture Mapping: Masks/General Purpose (2)

» Look-up tables:
» Pre-calculated computations or terms (e.g. acos())




Texture Mapping: Masks/General Purpose (3)

» Color ramps, remapping, color correction:

tex1D(texColorRemapR, texDiffuse.r);
tex1D(texColorRemapG, texDiffuse.g);
tex1D(texColorRemapB, texDiffuse.b);

FfinalColor.r
finalColor.g
finalColor.b




Fog

» Gradually fade colors to a background color:

finalColor = lerp(finalColor,fogColor,fogAmount)
» Fog amount calculation determines fog effect and shape:

» View-space depth

» World-space height

» Fog volumes

» Fog blend can be linear, exponential, or even a custom curve.

» In addition to the visual quality, it is a useful way to decrease rendering
distance and hide popping artifacts.




Transparency (alpha testing)

» Use alpha channel as a “cut-out mask”.

» Binary test is done on each pixel to be rendered (alpha testing):
» Is your alpha value above a certain threshold?

Yes = pixel continues rendering and goes to further stages in the pipeline.
No = pixel is killed right away.

» Pixels that fail the alpha test do not write any values to the depth buffer.
» Do not confuse with alpha blending.




Translucency (alpha blending)

v

Blend color with background by a specified amount

v

Blending amount can be constant across the object
Or read from a texture
All pixels write to the depth buffer (even those with alpha=0)

v

>




With HDR Rendering Without HDR Rendering

- =
e \ \_\‘L{‘“ e

Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Global Effects

= Shadows

= Light maps

* Radiosity

= Ambient Occlusion

= Reflections and Environment Mapping




Shadows

» Important to “stage” objects in the scene.

» Dynamically calculated: shadow volumes, shadow maps, ...etc.
» Statically baked: light maps.

» If an object is shadowed from one light, then it does not “see” it.

» A shadowed scene has:
» Light
» Shadow caster y

4 ]
=Y G

» Shadow receiver
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Shadows : Shadow Maps

» To a separate “shadow” depth buffer, draw all objects from the light’s point-
of-view.

— Stores what is visible from the light’s point of view.

» Draw objects to screen normally. For every pixel, object asks the shadow
map: do you see this pixel of me?
» Yes = Pixel is lit by that light.

» No = Pixel is shadowed from that light.

» Irrelevant of geometrical
complexity.
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Radiosity Lighting

» Tracing diffuse reflectance between scene objects.

» Can be faked in real-time by adding colored lights sampling the surrounding
environment.

» lrradiance via radiosity.

| -
| | -
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Direct Illumination




Ambient Occlusion

» The ambient term in the common lighting formula was found to be a little bit
too simplified.

» Asingle point can receive light reflected from many surfaces.

» Areas obstructed by other surfaces are less likely to receive bounced light
rays.

» Modulate ambient term by how much indirect lighting a point can receive =
area visibility test.




Environmental Mapping: Reflections

» Reflective materials act as mirrors to their surrounding environment.
» Naturally achievable with a ray-tracer.

» Polygon projection renderers must do some tricks to achieve it.
» Environment cube maps
» Spherical environment mapping

\
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Environmental Mapping: Cube Maps

» 6 images sampling a cube surrounding point of interest.

» Dynamic updates are relatively cheap and feasible:
» Render scene to the six sides of the cube map

Rerseen by
REIE - Camera Ray

Ray




Environmental Mapping: Spherical Mapping

» Single image sampling a sphere surrounding point of interest.
» Good for static reflections.

» Dynamic generation requires highly tessellated geometry to support curved
lines.




Image Space

= Post Processing
= Image Filtering

= Image Space Effects
* Deferred Shading




Post-Processing

» Apply additional passes of processing over pixels that have been already
rendered before.

» Purely image-based processing.

for (1=0; i<NumPixels; 1++)

{
Pixel px = Sourcelmage.Pixels[i];
CurrentRenderTarget.Pixels[1].rgbh =
(px.Color.r + px.Color.g + px.Color.b) / 3;
+

» Output result is stored in a new buffer.




Post-Processing : Image Filtering

» Application of image space convolution (spatial domain).
» Each pixel in the source image is passed through a “kernel”.
» Kernel can sample surrounding pixels within a certain “radius”.

The Convolution Operation Sequence

Sharpenin
szﬁuﬂn%
— Kemel
Mask




Filters : Sharpness




Filters : Emboss

Kifisas St f'ﬂ%‘;'ﬂll‘l
o




Filters : Blur

» Reduces noise and detall.

» Used in many effects:

» Depth of field, out of focus

» Bloom

» Fighting hard edges (anti-aliasing)
» Each pixel is averaged with its surroundings to a certain distance.
» Kernel size determines amount of blurriness.

» Apply it on a down-sampled image to achieve
even bigger kernel sizes.




Filters : Box vs. Gaussian Blur

» Kernel samples concentrate on center.
» Can be separated to two passes. 0.8
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Other Effects : Color Remapping

» Remap colors using 3 1D textures:

pix.r = texlD(texColorRemapR, pix.r);
pix.g = texlD(texColorRemapG, pix.g);
pix.b = texlD(texColorRemapB, pix.b);

» Remap colors using 1 3D texture (volume):
pix.rgb = tex3D(texColorRemap, pix.rgb);




Screen Space Ambient Occlusion Direct Lighting Only

Screen Space Ambient Occlusion provides a rough
approximation of reakime global lumination.
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Image Space Lighting : Deferred Shading

» Rasterize render data in
intermediary image buffers:

» Diffuse color
» Depth

» Normals

» ...elc

final image

» Apply lighting passes in
screen space
» Render light volumes
» Apply lighting in screen space




Questions?
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