
Real-time 3D Rendering Primer

Wessam Bahnassi EA MontrealWessam Bahnassi – EA Montreal

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Acknowledgements & Copyrights

This presentation contains images collected from many internet websites.
Copyrights for all images in this presentation are for their respective owners.
Please advise the author in case you want to use this presentation in
situations beyond personal education.
Thi t ti i itt d b th th t b bli h d th A biThis presentation is permitted by the author to be published on the Arabic
Game Developer Network (www.agdn-online.com), and is provided free-of-
charge.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Table of Contents
1. 3D Computer Graphics Primer

1. Scene Components
1. 3D Models 2. Rendering Techniques3 ode s
2. Cameras
3. Lights

1. Materials and Lighting
2. Texture Mapping
3. Fog
4 Translucency and Transparency2. Real-time Rendering Pipeline

1. Pipeline Diagram
2. Polygon Presentation

4. Translucency and Transparency
5. HDR Rendering

3. Global Effects
3. Positioning in 3D

4 Spaces and Transformations

3 G oba ects
1. Shadows
2. Light maps
3. Radiosity4. Spaces and Transformations

1. Local, World, View, Projection
2. Matrix Concatenation
3. Matrix Recognition

4. Ambient Occlusion
5. Reflections and Environment Mapping

4 Image Space

2. Algorithms
1. Modeling and Geometry Manipulation

4. Image Space
1. Post Processing
2. Image Filtering
3. Image Space Effectsg y p

1. Billboards
2. High-Order Surfaces
3. Morphing
4 Ski i

g
4. Deferred Shading

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

4. Skinning

1. Short Computer Graphics
IntroIntro

Scene Componentsp
Real-time Rendering Pipeline
Positioning in 3Dg
Transformations and Spaces

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Scene Components

Sharing a lot with cinematography.
A scene is made of various components:A scene is made of various components:

Things to film (the setting)
Camera
Lights

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Scene Components

Similar scene components
Scene information goes through a “pipeline” that transforms it to a 2D imageScene information goes through a pipeline that transforms it to a 2D image
displayed on the screen

Rendering pipelineRendering pipeline

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Scene Components: 3D Models

Geometry ultimately drawn as triangles, accompanied with additional data to
increase detail.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Scene Components: Camera

An imaginary entity that carries view properties and 2D projection
parameters, including:

Position
View direction
Lens propertiesLens properties
Projection type
Clip planes

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Scene Components: Lights

Another imaginary entity that carries lighting method and properties.
More detail to come in the rendering algorithms section.More detail to come in the rendering algorithms section.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Scene Components

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Real-time Rendering Pipeline

Takes information through a series of steps to generate the final image

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Real-time Rendering Pipeline

GPU is a big state machine.
Set drawing states, then issue drawg
commands.
Sample rendering code:

D3DMATERIAL RedMat;
RedMat.Diffuse = RGBA(1,0,0,1);
RedMat.Specular = RGBA(1,1,1,1);p (, , ,)
RedMat.SpecularPower = 24.0;

D3DDevice->SetMaterial(&RedMat);
D3DDevice->SetTexture(ClothTexture);

D3DDevice->DrawPrimitive(… Object1 Draw Info …);
D3DDevice->DrawPrimitive(… Object2 Draw Info …);

D3DDevice->SetTexture(ConcreteTexture);

D3DDevice->DrawPrimitive(… Object3 Draw Info …);

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Real-time Rendering Pipeline: Polygon Presentation

Polygons need to be presented on a screen with a finite number of pixels:
Rasterization
Ray tracing (rarely used in real-time applications and games)

Ray tracingRay tracingRasterizationRasterization

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Positioning in 3D

We need to position and orientate models in 3D space while preserving their
structure.
We can control structure change via scaling, or more advanced calculations
(will be discussed further in the algorithms section).
N d f k t t h t f tiNeed a framework to represent such transformations.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transformations and Spaces (1)

4x4 transformation matrices offer a very useful framework to move and
orientate 3D models in the world.
Affine transforms include translation (move), rotation, and scaling.
They can be expressed in row-major (D3DX) order or column-major
(O GL)(OpenGL).

Translation Rotation ScalingTranslation Rotation Scaling

⎥
⎥
⎤

⎢
⎢
⎡

010
001

tY
tX

⎥
⎥
⎤

⎢
⎢
⎡

− 0sincos0
0001

θθ ⎥
⎥
⎤

⎢
⎢
⎡

000
000

sY
sX

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣ 1000
100
010

tZ
tY

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣ 1000
0cossin0
0sincos0

θθ
θθ

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣ 1000
000
000

sZ
sY

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transformations and Spaces (2)

3D scenes must establish a global coordinate system convention:
Usually either left-handed or right-handedy g

3D models, lights, and cameras all rely on this system to locate themselves
in the world, thus it is called: world coordinates.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transformations and Spaces (3)

A matrix can be seen as representing a transform between coordinate
systems (spaces).
Common space transformations are:

Local-To-World
W ld T CWorld-To-Camera
Camera-To-Clip (projection)

Combine transforms via matrix multiplication (order-dependent!):Combine transforms via matrix multiplication (order dependent!):
Local-To-World * World-To-Camera = Local-To-Camera

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transformations and Spaces: Local Space

3D models are defined in local space.
Vertex positions are relative to an imaginary pivot.Vertex positions are relative to an imaginary pivot.
Usually the center of the object.

Y

X
Z

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transformations and Spaces: Local Space

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transformations and Spaces: World Space

World space is the reference for all other objects.
All object positions/orientations are in world coordinates (including camerasAll object positions/orientations are in world coordinates (including cameras
and lights).

Y

X

Y

X

Z

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transformations and Spaces: World Space

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transformations and Spaces: View Space

Camera space is centered at the camera's optical center and looks down the
z-axis (either positive or negative) .
Last 3D step before 2D projection.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transformations and Spaces: View Space

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transformations and Spaces: Projection

Simulates physical camera lens properties.
Transforms 3D coordinates to 2D coordinates with Z remap.Transforms 3D coordinates to 2D coordinates with Z remap.
Visible coordinates range is [-1,1] for X and Y, and [0,1] for Z ([0,-1] in
OpenGL).
One final transform is needed to map [-1,1] to screen coordinates (e.g,
[0,640]).

Far

Eye NearEye Near

FoV

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transformations and Spaces: Matrix Concatenation

Transforms can be concatenated to form one transform that represents all of
them via matrix multiplication.
Chain them in trees to represent skeleton hierarchies and relationships.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transformations and Spaces: Matrix Recognition

A common affine transformation matrix is laid out as below.
It is possible to extract individual scale/rotation/translation information fromIt is possible to extract individual scale/rotation/translation information from
such a matrix.

Orientation Translation

⎥
⎥
⎤

⎢
⎢
⎡

00
00

tYscaleY
tXscaleXx-axis

y-axis

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣ 1000
00

00
tZscaleZ
tYscaleYy axis

z-axis

⎦⎣ 1000

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Real-time 3D Computer Graphics
AlgorithmsAlgorithms

Modeling and Geometry Manipulationg y p
Rendering Techniques
Global Effects
Image Space

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Modeling and
Geometry ManipulationGeometry Manipulation

Billboards
High-Order Surfaces
Morphingp g
Skinning

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Billboards

Simple textured quads.
Always facing the camera.Always facing the camera.
Used a lot in rendering trees, and particles in general.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Billboards (cont’d)

Expand the billboard’s position point to a quad in view space’s up and right
axes:

billboard.vertices.bottomleft =
billboard.center +
camera.up*(-billboard.height/2) +
camera.right*(-billboard.width/2);

billboard.vertices.bottomright =
billboard.center +
camera.up*(-billboard.height/2) +
camera.right*(+billboard.width/2);

billboard.vertices.topright =
billboard.center +
camera.up*(+billboard.height/2) +
camera.right*(+billboard.width/2);

billboard.vertices.topleft =
billboard.center +
camera.up*(+billboard.height/2) +
camera.right*(-billboard.width/2);

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

High-Order Surfaces: Bezier Patches

3D geometry represented by a parametric surface: Bezier cubic patches.
Control points guide the surface (convex hull). Surface only passes throughControl points guide the surface (convex hull). Surface only passes through
end points.
Continuous(*), infinite resolution, compact representation.

* Continuity on boundaries requires special care.y q p

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

High-Order Surfaces: Bezier Patches (cont’d)

A quick look on Bezier curve evaluation:

Cubic Bezier patches can be evaluated with a slightly extended formula:

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

High-Order Surfaces: Bezier Patches (cont’d)

Bezier curves/patches can be evaluated recursively (Paul de Casteljau).
A curve can be broken into two other curves of the same degree.A curve can be broken into two other curves of the same degree.

Can be fast if recursion end criteria is properly determinedCan be fast if recursion end criteria is properly determined.
A game can subdivide until a certain amount of polygons have been
generated.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Geometry Morphing (blending/tweening)

Similar to the concept of key frames in
traditional 2D animation.
Key geometry frames, sharing the same
topology, vertex count and vertex ordering.
I t di t f t d bIntermediate frames are generated by
interpolating between two key frames.
Flexible deformations.Flexible deformations.
Can take a lot of memory, especially for
long animations.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Geometry Morphing (blending/tweening), cont’d.

Done in two methods:
Blended: The final pose is a blend between two keyframes:

f (i t i 0 i M h V ti C t i)for (int i=0; i<Mesh.Vertices.Count; i++)
Mesh.Vertices[i] = Lerp(keyShape1.Vertices[i], keyShape2.Vertices[i], percentage);

Additi e The final pose is an acc m lation of an open n mber of relati eAdditive: The final pose is an accumulation of an open number of relative
keyframes (used a lot in facial animation):

for (int i=0; i<Mesh.Vertices.Count; i++)
Mesh.Vertices[i] = Base.Vertices[i] + Smile.Vertices[i] * SmilePercentage +[] [] [] g

Blink.Vertices[i] * BlinkPercentage +
Surprise.Vertices[i] * SurprisePercentage;

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Skinning: Skeletal Animation

Geometry deformation based on skeletal animation.
Geometry is “skinned” over a skeleton and attaches to its bones.Geometry is skinned over a skeleton and attaches to its bones.
Vertices expressed relative to their owner bones, or in bone-space.
Transforming a vertex to world space now involves an additional bone-to-
world matrix (almost always updated every frame from animation).

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Skinning: Matrix Palette

A skinned vertex can be attached to more than one influencing bone at the
same time using different weights, which in turn should all sum up to 1.0.
For practical reasons, the maximum number of influences is usually
assumed to be 3 or 4 (mostly 3).
Th li it d b f GPU t t i tThe limited number of GPU constant registers may
prevent fitting all bone matrices to draw the character
in a single batch.
Normals, tangents and binormals must be skinned
as well.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Skinning: Sample Code

#define MAX_INFLUENCES 4
struct SkinnedVertexstruct SkinnedVertex
{

float3 boneSpacePos;
float3 worldSpacePos;
int controllingBones[MAX_INFLUENCES];
float boneWeights[MAX INFLUENCES];float boneWeights[MAX_INFLUENCES];

}

for each (Vertex v in mesh.Vertices)()
{

v.worldSpacePos = float3(0,0,0);
for (b=0 to MAX_INFLUENCES)
{

Bone bone = mesh Bones[v controllingBones[b]];Bone bone mesh.Bones[v.controllingBones[b]];
v.worldSpacePos += transform(v.boneSpacePos,bone.localToWorldMatrix) *

v.boneWeights[b];
}

}

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Rendering Techniques

Materials and Lightingg g
Texture Mapping
Fog
Translucency and Transparency
HDR Rendering

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting

Materials are identified based on their
surface properties (e.g.
smoothness/roughness) and the way theysmoothness/roughness) and the way they
interact with light (how we perceive them).
Real-time rendering uses simplified formulas
that empirically match a certain material’sthat empirically match a certain material s
properties (simplification of BRDFs).
Some key models: Lambert, Phong (or
Bli) St C k T O NBlinn), Strauss, Cook-Torrance, Oren-Nayar,
Anisotropic, …

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting: Lambert Shading

Simulates micro-roughness on surfaces ⇒ light diffusion.
Simplified to the angular relationship between surface normal and incomingSimplified to the angular relationship between surface normal and incoming
light direction.
shade = cos(θ)

or by getting rid of the trigonometry stuff:or by getting rid of the trigonometry stuff:
shade = N.L

Usually referred to as The Diffuse Component.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting: Phong/Blinn Shading

Building on Lambert, adds a highlight component.
Mimics reflection of the light source.Mimics reflection of the light source.
Function to view direction.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting: Phong/Blinn Shading

Calculated as:
specular = (R.V)n (Phong)
where: R = 2.0×(N.L)×N – L

C l l ti R i li htl h B t NH l hCalculating R is slightly heavy. But NH seems close enough:
specular = (N.H)n (Blinn)

where:

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting: Ambient

Simulates light scattering in the environment, which results in surfaces lit by
indirect light rays.
Overly simplistic representation:
Add a constant color!
Th f l th f iThe formula thus far is:

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting: Light Types

The type of light dictates how its direction and color are calculated during
lighting.

Common light types:
A bi tAmbient
Directional
Point
Spot

Extensions:
Hemisphere
Image basedImage-based
Spherical harmonics

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting: Directional Lights

Single color.
Parallel rays lighting every point in the whole scene equally.Parallel rays lighting every point in the whole scene equally.
Has direction, but no position.
Useful for simulating sun light.
Simply represented by the calculation clamp(N.L).

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting: Point Lights

Single color.
Rays radiating equally in every direction.Rays radiating equally in every direction.
Has position, but no direction.
Attenuation based on point distance from light.
Sample Calculation:

float3 RangedDistance = (LightPosition - PointPosition) / LightRange;float3 RangedDistance (LightPosition PointPosition) / LightRange;
float Attenuation = saturate(1.0f - lenSq(RangedDistance));

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting: Spot Lights

Single color.
Has position and direction!Has position and direction!
Rays radiating within a certain cone with falloff near the edges.
Spot attenuation is the percentage between (the angle formed between spot
direction and ray direction), and (the outer angle minus the inner angle).

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting: Hemispherical Lighting

A sphere surrounds the object.
Light color is a function of polar angles.Light color is a function of polar angles.
Can be simulated through “many” primitive lights too.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting: Image-based Lighting

A textured sphere/cube surrounds the object.
Light color is a function of polar angles.Light color is a function of polar angles.
Image reflects the environment of the object.
Positionless, direction-based.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting: Spherical Harmonics (1)

Precompute lighting response for geometry points over a surrounding
sphere.
Include lighting and visibility calculated by an advanced renderer.
Calculations made per-vertex or per-texel.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Materials & Lighting: Spherical Harmonics (2)

Compress and store info as spherical harmonics coefficients.
9 coeffecients for every light channel for 3rd order spherical harmonics.9 coeffecients for every light channel for 3 order spherical harmonics.
Shader needs only a number of dot-product operations with the light
direction to retrieve the matching value.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping

Adding color detail to geometry with less memory.
Color information taken from an image, and rasterized to cover triangleColor information taken from an image, and rasterized to cover triangle
areas.
Textures on a triangle are addressed via normalized UV values stored in

h teach vertex.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping (cont’d)

Textures can be 1D, 2D, 3D or cube (six faces).
They can contain stored images, or be procedurallyThey can contain stored images, or be procedurally
evaluated at runtime (e.g. noise, fractals).
Hardware imposes certain restrictions in terms of

bilit / f (di i d f t)capability/performance (e.g. dimensions and format).

Sampling an image texture at (U,V):Sampling an image texture at (U,V):
x = (int)(U * texWidth);
y = (int)(V * texHeight);
color texMem[y * texHeight + x];color = texMem[y * texHeight + x];

Or in HLSL:Or in HLSL:
color = tex2D(texSampler,texCoord);

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: UVW Mapping/Projection

Assigning UV/UVW values to vertices depends on the required results.
Some simple procedural UV mapping methods:

Spherical
Cylindrical
Planar

In general, they are hand-authored and stored in the
mesh’s vertices.
Planar UV generation example (XZ plane):Planar UV generation example (XZ plane):

for each (Vertex vertex in mesh.Vertices)
{
vertex.texU = vertex.posX * scaleU + offsetU;
vertex.texV = vertex.posZ * scaleV + offsetV;

}

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Addressing

What should happen when the value of U or V is outside of [0,1] ?
Wrap (Repeat)
Mirror
Clamp
BorderBorder

Setting texture addressing mode in HLSL:
sampler mySampler = sampler_state
{{

Texture = <g_Texture>;
AddressU = Wrap;
AddressV = Clamp;
Add W MiAddressW = Mirror;

};

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Mipmaps

When sampling the texture for distant objects, artifacts and inefficiencies
occur due to undersampling and cache-misses (e.g. reading from a 512x512
image to cover only 25 pixels).
Mipmaps are a continuous series of half-sized images associated with the
texture (pyramid)texture (pyramid).

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Mipmaps (cont’d)

GPU picks the suitable mipmap to texture the area in question depending on
difference of UV values between pixels.
Mipmaps are usually auto-generated by downsampling the full-resolution
texture sequentially, but they can contain totally different images too (for
special effects)special effects).

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Filtering

Textured geometry rarely map textures at 1:1 pixel:texel ratio.
Textures need to be minified/magnified during sampling.Textures need to be minified/magnified during sampling.

Point sampling: Pick nearest neighbor.
Linear filtering: Weighted blend between adjacent texels (box filtered).
Anisotropic filtering: Weighted with anisotropic kernel based on slope, and across
different mipmaps.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Filtering (cont’d)

Filtering can be specified for each case differently:
Magnification
Minification
Mipmapping

Common filtering settings:
Point: Point Min/Mag/Mip
Bilinear: Linear Min/Mag Point MipBilinear: Linear Min/Mag, Point Mip.
Trilinear: Linear Min/Mag/Mip.

S tti t t filt i d i HLSLSetting texture filtering mode in HLSL:
sampler mySampler =
sampler_state
{{

Texture = <g_Texture>;
MagFilter = Linear;
MinFilter = Linear;
MipFilter = Point;

};

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Diffuse Texturing

Provide detailed color information within geometry polygons (Albedo).
Diffuse maps are usually unlit, as real-time lighting is applied later, but smallDiffuse maps are usually unlit, as real time lighting is applied later, but small
bump shadows can be included.
May have an alpha channel to dictate translucency/transparency.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Bump Maps

Bump maps (a.k.a height maps) provide detail to geometry normals by
specifying values of normal perturbation.
Normal at every texel is found by determining slope angle in relationship with
surrounding texels.
B l i dd d t f lBump map normal is added to surface normal.
Bump map is stored in a single color channel.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Normal Maps

Normal maps provide detail to geometry normals by specifying normals at
each texel.
Normals in a normal map replace normals from vertices.
Information is 3D and needs 3 channels (more storage than bump maps).
Can be stored in object-space or tangent-space.
Direction values range in [-1,1] for each axis. Remapped to [0,1] for storage.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Per-pixel Lighting

Normals in a normal map are commonly stored in tangent-space (the space
of the surface the texture is mapped on).
Must transform normals to same space as light: need a object-to-tangent
space matrix (Tangent | Binormal | Normal matrix):

⎥
⎥
⎤

⎢
⎢
⎡

BzByBx
TzTyTx

⎥
⎥
⎦⎢

⎢
⎣ NzNyNx

y

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Per-pixel Lighting (cont’d)

Code example (transform light to tangent space):
In the vertex shader:

// Calculate the light vector (vLightPosition is in object space)
vLightVector = vLightPosition - position.xyz;

// Transform the light vector from object space into tangent space
float3x3 TBNMatrix = float3x3(vTangent, vBinormal, vNormal);
vLightVector.xyz = mul(TBNMatrix, vLightVector);

In the pixel shader:

// Normalize the light vector after linear interpolation
vLightVector = normalize(vLightVector);

// Since the normals in the normal map are in// p
// the (color) range [0, 1], we need to uncompress them to "real“
// normal (vector) directions.
// Decompress vector ([0, 1] -> [-1, 1])
float3 vNormalColor = tex2D(normalTexture normalCoords) rgb;float3 vNormalColor = tex2D(normalTexture, normalCoords).rgb;
float3 vNormal = 2.0f * (vNormalColor - 0.5f);

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Masks/General Purpose (1)

Masking terms:
Translucencyy
Specular
Reflection

t…etc

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Masks/General Purpose (2)

Look-up tables:
Pre-calculated computations or terms (e.g. acos())(g)

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Texture Mapping: Masks/General Purpose (3)

Color ramps, remapping, color correction:
finalColor.r = tex1D(texColorRemapR, texDiffuse.r);
finalColor.g = tex1D(texColorRemapG, texDiffuse.g);
finalColor.b = tex1D(texColorRemapB, texDiffuse.b);

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Fog

Gradually fade colors to a background color:
finalColor = lerp(finalColor,fogColor,fogAmount)

Fog amount calculation determines fog effect and shape:
View-space depth
World-space heightWorld space height
Fog volumes

Fog blend can be linear, exponential, or even a custom curve.
In addition to the visual quality, it is a useful way to decrease rendering
distance and hide popping artifacts.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Transparency (alpha testing)

Use alpha channel as a “cut-out mask”.
Binary test is done on each pixel to be rendered (alpha testing):Binary test is done on each pixel to be rendered (alpha testing):

Is your alpha value above a certain threshold?
Yes ⇒ pixel continues rendering and goes to further stages in the pipeline.
N i l i kill d i htNo ⇒ pixel is killed right away.

Pixels that fail the alpha test do not write any values to the depth buffer.
Do not confuse with alpha blendingDo not confuse with alpha blending.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Translucency (alpha blending)

Blend color with background by a specified amount
Blending amount can be constant across the objectBlending amount can be constant across the object
Or read from a texture
All pixels write to the depth buffer (even those with alpha=0)

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

HDR Rendering

Store/calculate colors outside of [0,255] [0,1] range.
Express a wider range of color relationships (e.g., “very bright” objects).Express a wider range of color relationships (e.g., very bright objects).
More correct lighting calculations (no saturation):

No more 1+1=1

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

HDR Rendering: Tone Mapping

Current display devices are capable of only displaying [0,1].
Tone mapping brings HDR images back to [0,1] for display on LDR devices.Tone mapping brings HDR images back to [0,1] for display on LDR devices.
A number of mapping approaches exist.

Simple example: take minimum and maximum color values in the screen, and map
them to [0,1] respectively, with all colors in-between linearly mapped within [0,1].

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Global Effects

Shadows
Light maps
Radiosity
Ambient Occlusion
Reflections and Environment Mapping

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Shadows

Important to “stage” objects in the scene.
Dynamically calculated: shadow volumes, shadow maps, …etc.Dynamically calculated: shadow volumes, shadow maps, …etc.
Statically baked: light maps.
If an object is shadowed from one light, then it does not “see” it.
A shadowed scene has:

Light
Shadow caster
Shadow receiver

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Shadows : Shadow Volumes

For every light:
For every object:y j

Extend volume from object boundaries and light position.

Draw entire scene, and check if screen pixel falls inside a volume.
Yes ⇒ Avoid accumulating light contributionYes ⇒ Avoid accumulating light contribution.
No ⇒ Accumulate light contribution.

Dependent on shape complexity.
Consumes a lot of fill rate.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Shadows : Shadow Maps

To a separate “shadow” depth buffer, draw all objects from the light’s point-
of-view.
⇒ Stores what is visible from the light’s point of view.

Draw objects to screen normally. For every pixel, object asks the shadow
map: do you see this pixel of me?map: do you see this pixel of me?

Yes ⇒ Pixel is lit by that light.
No ⇒ Pixel is shadowed from that light.g

Irrelevant of geometrical
l itcomplexity.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Shadows : Light Maps

Calculate lighting beforehand, and store it for run-time use.
Applicable to static scenes (static lights + static geometry).Applicable to static scenes (static lights static geometry).
Can consume large amounts of memory.
Usually compressed into an atlas based on detail resolution.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Radiosity Lighting

Tracing diffuse reflectance between scene objects.
Can be faked in real-time by adding colored lights sampling the surroundingCan be faked in real time by adding colored lights sampling the surrounding
environment.
Irradiance via radiosity.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Ambient Occlusion

The ambient term in the common lighting formula was found to be a little bit
too simplified.
A single point can receive light reflected from many surfaces.
Areas obstructed by other surfaces are less likely to receive bounced light
rays.
Modulate ambient term by how much indirect lighting a point can receive ⇒
area visibility test.area visibility test.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Environmental Mapping: Reflections

Reflective materials act as mirrors to their surrounding environment.
Naturally achievable with a ray-tracer.Naturally achievable with a ray tracer.
Polygon projection renderers must do some tricks to achieve it.

Environment cube maps
Spherical environment mapping

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Environmental Mapping: Cube Maps

6 images sampling a cube surrounding point of interest.
Dynamic updates are relatively cheap and feasible:Dynamic updates are relatively cheap and feasible:

Render scene to the six sides of the cube map

⎤⎡⎤⎡ rU

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
y

x

r
r

W
V
U

⎥⎦⎢⎣⎥⎦⎢⎣ zrW

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Environmental Mapping: Spherical Mapping

Single image sampling a sphere surrounding point of interest.
Good for static reflections.Good for static reflections.
Dynamic generation requires highly tessellated geometry to support curved
lines.

⎥
⎥
⎤

⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎤

⎢
⎢
⎡

50

50
222

y

x

zyx

zyx

r
r

upupup

.rightrightright

V
U

right = MLocalToView[0]

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣

×

⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣

−=

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣ 1
1000
0000

50
222

1
0 zr

.ppp

up = MLocalToView[1]

⎦⎣

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Image Space

Post Processingg
Image Filtering
Image Space Effectsg p
Deferred Shading

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Post-Processing

Apply additional passes of processing over pixels that have been already
rendered before.

Purely image-based processing.

for (i=0; i<NumPixels; i++)
{{

Pixel px = SourceImage.Pixels[i];

CurrentRenderTarget.Pixels[i].rgb =
(px Color r + px Color g + px Color b) / 3;(px.Color.r + px.Color.g + px.Color.b) / 3;

}

Output result is stored in a new buffer.Output result is stored in a new buffer.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Post-Processing : Image Filtering

Application of image space convolution (spatial domain).
Each pixel in the source image is passed through a “kernel”.Each pixel in the source image is passed through a kernel .
Kernel can sample surrounding pixels within a certain “radius”.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Filters : Sharpness

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Filters : Emboss

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Filters : Blur

Reduces noise and detail.
Used in many effects:Used in many effects:

Depth of field, out of focus
Bloom
Fighting hard edges (anti-aliasing)

Each pixel is averaged with its surroundings to a certain distance.
Kernel size determines amount of blurrinessKernel size determines amount of blurriness.
Apply it on a down-sampled image to achieve
even bigger kernel sizes.gg

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Filters : Box vs. Gaussian Blur

Kernel samples concentrate on center.
Can be separated to two passes.Can be separated to two passes.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Other Effects : Bloom

Resembles camera over-exposure.
Blur only very bright areas.Blur only very bright areas.
Add blurred image over original.
Different blur kernels can be used to simulate different effects.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Other Effects : Color Remapping

Remap colors using 3 1D textures:
pix.r = tex1D(texColorRemapR, pix.r);
pix.g = tex1D(texColorRemapG, pix.g);
pix.b = tex1D(texColorRemapB, pix.b);

Remap colors using 1 3D texture (volume):
pix.rgb = tex3D(texColorRemap, pix.rgb);

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Other Effects : Screen-space Ambient Occlusion

Calculates the concavity of a point on the surface at each pixel.
Usually via:Usually via:

Neighbor normal angles.
Neighbor depth differences.

Point is concave => Darker.

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Image Space Lighting : Deferred Shading

Rasterize render data in
intermediary image buffers:

Diffuse color
Depth
NormalsNormals
…etc

Apply lighting passes in
screen space

R d li ht lRender light volumes
Apply lighting in screen space

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Questions?

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Credits

Sergei Savchenko
Jean-Sebastien PerrierJean Sebastien Perrier
Homam Bahnassi

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

Thank You!

10/April/2009Arabic Game Developer Network (www.agdn-online.com)

