Real-time 3D Rendering Primer




Acknowledgements & Copyrights

» This presentation contains images collected from many internet websites.
Copyrights for all images in this presentation are for their respective owners.

» Please advise the author in case you want to use this presentation in
situations beyond personal education.

» This presentation is permitted by the author to be published on the Arabic
Game Developer Network (www.agdn-online.com), and is provided free-of-
charge.




Table of Contents

1. 3D Computer Graphics Primer

1.
1. 3D Models
2. Cameras
3. Lights
2.
1. Pipeline Diagram
2. Polygon Presentation
3.
4.
1. Local, World, View, Projection
2. Matrix Concatenation
3. Matrix Recognition
2. Algorithms
1.
1. Billboards
2. High-Order Surfaces
3.  Morphing
4. Skinning

AR A

SR CORINVEE

CIEE S WRIDEE

Materials and Lighting

Texture Mapping

Fog

Translucency and Transparency
HDR Rendering

Shadows

Light maps

Radiosity

Ambient Occlusion

Reflections and Environment Mapping

Post Processing
Image Filtering
Image Space Effects
Deferred Shading




1. Short Computer Graphics
Intro

= Scene Components
» Real-time Rendering Pipeline

= Positioning in 3D
* Transformations and Spaces




Scene Components

» Sharing a lot with cinematography.

» Ascene is made of various components:
» Things to film (the setting)
» Camera
» Lights

inemaisDope.com
enfieth Cenbury-Fox >




Scene Components
» Similar scene components

» Scene information goes through a “pipeline” that transforms it to a 2D image
displayed on the screen

2D Image




Scene Components: 3D Models

» Geometry ultimately drawn as triangles, accompanied with additional data to
increase detail.




Scene Components: Camera

» An imaginary entity that carries view properties and 2D projection
parameters, including:

» Position

» View direction

» Lens properties
» Projection type
» Clip planes




Scene Components: Lights

» Another imaginary entity that carries lighting method and properties.
» More detail to come in the rendering algorithms section.

Directional light Point light Spot light




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009




Real-time Rendering Pipeline

» Takes information through a series of steps to generate the final image

2D API
Commands
3D APIL:

OpenGL
or Dir
CPU - GPU Boundary

GPU
Command &
Data Stream Assembled Pixel
Vertex Index Polygons, Lines Location Pixel
Updates

/ Stream & Points Stream
GPU ) Primitive Hmarlzatmn H H“’-’“ —)
Front Asse Interpol e

Transformed

Transformed Rasterized
Fragments

Vertices Pretransformed

L ‘Prugrnmm:hli Fragments 4 Programm :thl -
ragme
Vertex Proce

Pretransformed
Vertices




Real-time Rendering Pipeline

» GPU is a big state machine.

» Set drawing states, then issue draw
commands.

» Sample rendering code:

D3DMATERIAL RedMat;
RedMat.Diffuse = RGBA(1,0,0,1);
RedMat.Specular = RGBA(1,1,1,1);
RedMat.SpecularPower = 24_.0;

D3DDevice->SetMaterial (&RedMat) ;
D3DDevice->SetTexture(ClothTexture);

D3DDevice->DrawPrimitive(.. Objectl Draw Info ..
D3DDevice->DrawPrimitive(.. Object2 Draw Info ..

o/ o/

D3DDevice->SetTexture(ConcreteTexture);

D3DDevice->DrawPrimitive(.. Object3 Draw Info ..);




Real-time Rendering Pipeline: Polygon Presentation

» Polygons need to be presented on a screen with a finite number of pixels:
» Rasterization
» Ray tracing (rarely used in real-time applications and games)




Positioning in 3D

» We need to position and orientate models in 3D space while preserving their
structure.

» We can control structure change via scaling, or more advanced calculations
(will be discussed further in the algorithms section).

» Need a framework to represent such transformations.




Transformations and Spaces (1)

» 4x4 transformation matrices offer a very useful framework to move and
orientate 3D models in the world.

» Affine transforms include translation (move), rotation, and scaling.

» They can be expressed in row-major (D3DX) order or column-major
(OpenGL).




Transformations and Spaces (2)

» 3D scenes must establish a global coordinate system convention:
» Usually either left-handed or right-handed

» 3D models, lights, and cameras all rely on this system to locate themselves
In the world, thus it is called: world coordinates.

Left-handed Right-handed
Cartesian Coordinates Cartesian Coordinates

Y Y




Transformations and Spaces (3)

» A matrix can be seen as representing a transform between coordinate
systems (spaces).

» Common sSpace transformations are:
» Local-To-World
» World-To-Camera
» Camera-To-Clip (projection)

» Combine transforms via matrix multiplication (order-dependent!):
» Local-To-World * World-To-Camera = Local-To-Camera




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



G <L +
00061 JCIl
Crorer Jl NS

Arabic Game Developer Network (www.agdn-online.com) 10/April/2009




Transformations and Spaces: World Space

» World space is the reference for all other objects.

» All object positions/orientations are in world coordinates (including cameras
and lights).




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009




Transformations and Spaces: View Space

» Camera space is centered at the camera's optical center and looks down the
z-axis (either positive or negative).

» Last 3D step before 2D projection.

The red sguare is the screen, losated at 2= 0.




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009




Transformations and Spaces: Projection

» Simulates physical camera lens properties.
» Transforms 3D coordinates to 2D coordinates with Z remap.

» Visible coordinates range is [-1,1] for X and Y, and [0,1] for Z ([0,-1] in
OpenGL).

» One final transform is needed to map [-1,1] to screen coordinates (e.qg,
[0,640]).

— =t
q

L
—l
view frustum

canonical view volume




objesot
hisrarchy

Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Transformations and Spaces: Matrix Recognition

» A common affine transformation matrix is laid out as below.

» It is possible to extract individual scale/rotation/translation information from
such a matrix.




Real-time 3D Computer Graphics
Algorithms

= Modeling and Geometry Manipulation
= Rendering Techniques

* Global Effects

= |[mage Space




Modeling and
Geometry Manipulation

= Billboards
= High-Order Surfaces

= Morphing
= Skinning




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Billboards (cont’d)

» Expand the billboard’s position point to a quad in view space’s up and right
axes:

billboard.vertices.bottomleft = billboard.vertices.bottomright =
billboard.center + billboard.center +
camera.up*(-billboard.height/2) + camera.up*(-billboard.height/2) +
camera.right*(-billboard.width/2); camera.right*(+billboard.width/2);

billboard.vertices.topright = billboard.vertices.topleft =
billboard.center + billboard.center +
camera.up*(+billboard.height/2) + camera.up*(+billboard.height/2) +

camera.right*(+billboard.width/2); camera.right*(-billboard.width/2);




High-Order Surfaces: Bezier Patches

» 3D geometry represented by a parametric surface: Bezier cubic patches.

» Control points guide the surface (convex hull). Surface only passes through
end points.

» Continuous®, infinite resolution, compact representation.

* Continuity on boundaries requires special care.




High-Order Surfaces: Bezier Patches (cont’d)

» A quick look on Bezier curve evaluation:

QU= 33 5 )2, 0)

. . . ."""..I-. irl c I"EE_E;"-I |:_1 u
increasing v _.

L=0, w=0




High-Order Surfaces: Bezier Patches (cont’d)

» Bezier curves/patches can be evaluated recursively (Paul de Casteljau).
» Acurve can be broken into two other curves of the same degree.

w

Can ho f
wall Ue |

J
» A game can subdivide until a certain amount of polygons have been
generated.




Geometry Morphing (blending/tweening)

» Similar to the concept of key frames in
traditional 2D animation.

» Key geometry frames, sharing the same B8
topology, vertex count and vertex ordering

» Intermediate frames are generated by
interpolating between two key frames.

» Flexible deformations.

» Can take a lot of memory, especially for
long animations.




Geometry Morphing (blending/tweening), cont’d.

» Done in two methods:

» Blended: The final pose is a blend between two keyframes:

» for (int i=0; i<Mesh.Vertices.Count; i++)
Mesh.Vertices|[i] = Lerp(keyShapel.Vertices[i], keyShape2.Vertices]i], percentage);

» Additive: The final pose is an accumulation of an open number of relative
keyframes (used a lot in facial animation):

» for (int i=0; i<Mesh.Vertices.Count; i++)
Mesh.Vertices[i] = Base.Vertices][i] + Smile.Vertices[i] * SmilePercentage +
Blink.Vertices[i]  * BlinkPercentage +
Surprise.Vertices|[i] * SurprisePercentage;




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Skinning: Matrix Palette

» A skinned vertex can be attached to more than one /nfluencing bone at the
same time using different weights, which in turn should all sum up to 1.0.

» For practical reasons, the maximum number of influences is usually
assumed to be 3 or 4 (mostly 3).

» The limited number of GPU constant registers may
prevent fitting all bone matrices to draw the character
in a single batch.

» Normals, tangents and binormals must be skinned
as well.




Skinning: Sample Code

#define MAX_ INFLUENCES 4
struct SkinnedVertex

float3 boneSpacePos;

float3 worldSpacePos;

int control lingBones|[MAX_ INFLUENCES];
float boneWeights[MAX INFLUENCES];

}

for each (Vertex v in mesh._Vertices)

v.wor ldSpacePos = float3(0,0,0);
for (b=0 to MAX_ INFLUENCES)

Bone bone = mesh.Bones[v.controllingBones|b]];
v.worldSpacePos += transform(v.boneSpacePos,bone.llocalToWorldMatrix) *
v.boneWeights|b];




Rendering Techniques

= Materials and Lighting

= Texture Mapping

* Fog

* Translucency and Transparency
= HDR Rendering




Materials & Lighting

» Materials are identified based on their
surface properties (e.g.
smoothness/roughness) and the way they
interact with light (how we perceive them).

» Real-time rendering uses simplified formulas
that empirically match a certain material’s
properties (simplification of BRDFs).

£
» Some key models: Lambert, Phong (or _ oy
Blinn), Strauss, Cook-Torrance, Oren-Nayar, el e
Anisotropic, P ¢. David Briggs, 2007

. »
J) 4

| | Sl i "




Materials & Lighting: Lambert Shading

» Simulates micro-roughness on surfaces = light diffusion.

» Simplified to the angular relationship between surface normal and incoming
light direction.

» shade = cos(6) lﬁ
or by getting rid of the trigonometry stuff: ' \
shade = N.L A
\
» Usually referred to as 7he Diffuse Component. \
\ i

on a surface

o
§=
B =
=

[4y]

&

=

&
=
=2
-




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Materials & Lighting: Phong/Blinn Shading

» Calculated as:
specular = (R.V)" (Phong)
where: R = 2.0x(N.L)xN — L

S
» Calculating Ris slightly heavy. But NH seems close enough:
specular = (N.H)" (Blinn)

— Blinn-Phong




Materials & Lighting: Ambient

» Simulates light scattering in the environment, which results in surfaces lit by
indirect light rays.

» Overly simplistic representation:
Add a constant color!

» The formula thus far is:

I, = kaia+ ) (ka(L - N)ia + ky(R-V)%,).

lights




Materials & Lighting: Light Types

» The type of light dictates how its direction and color are calculated during
lighting.

» Common light types:
» Ambient
» Directional
» Point
» Spot

» Extensions:
» Hemisphere
» Image-based
» Spherical harmonics




Materials & Lighting: Directional Lights

» Single color.

» Parallel rays lighting every point in the whole scene equally.
» Has direction, but no position.

» Useful for simulating sun light.

» Simply represented by the calculation clamp(N.L).




Materials & Lighting: Point Lights

» Single color.

» Rays radiating equally in every direction.

» Has position, but no direction.

» Attenuation based on point distance from light.
» Sample Calculation:

Tfloat3 RangedDistance = (LightPosition - PointPosition) / LightRange;
float Attenuation = saturate(1.0f - lenSqg(RangedDistance));




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Materials & Lighting: Hemispherical Lighting

» A sphere surrounds the object.
» Light color is a function of polar angles.
» Can be simulated through “many” primitive lights too.

P [=] E3

i)
Wie




Materials & Lighting: Image-based Lighting

» Atextured sphere/cube surrounds the object.
» Light color is a function of polar angles.

» Image reflects the environment of the object.
» Positionless, direction-based.




Materials & Lighting: Spherical Harmonics (1)

» Precompute lighting response for geometry points over a surrounding
sphere.

» Include lighting and visibility calculated by an advanced renderer.
» Calculations made per-vertex or per-texel.

Tp(S) — Vp(S)HNp (5)

T




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Texture Mapping

» Adding color detail to geometry with less memory.

» Color information taken from an image, and rasterized to cover triangle
areas.

» Textures on a triangle are addressed via normalized UV values stored in
each vertex.

(1.0)




Texture Mapping (cont’d)

» Textures can be 1D, 2D, 3D or cube (six faces).

» They can contain stored images, or be procedurally
evaluated at runtime (e.g. noise, fractals).

» Hardware imposes certain restrictions in terms of
capability/performance (e.g. dimensions and format).

» Sampling an image texture at (U,V):
X = (Int)(U * texWidth);
y = (int)(V * texHeight);
color = texMem[y * texHeight + X];

» Orin HLSL:
color = tex2D(texSampler,texCoord);

\




Texture Mapping: UVW Mapping/Projection

» Assigning UV/UVW values to vertices depends on the required results.

» Some simple procedural UV mapping methods: o
» Spherical

» Cylindrical l
» Planar

» In general, they are hand-authored and stored in the \
mesh’s vertices. .8

» Planar UV generation example (XZ plane): : Y T

for each (Vertex vertex In mesh.Vertices)

{ I I James CouchH
vertex.texU = vertex.posX * scaleU + offsetU; — Adre/Cauhaom

}

vertex.texV = vertex.posZ * scaleV + offsetV;

TEXTURE




Texture Mapping: Addressing

» What should happen when the value of U or V is outside of [0,1] ?
» Wrap (Repeat)
»  Mirror
» Clamp
» Border

» Setting texture addressing mode in HLSL.:
sampler mySampler = sampler_state

{
Texture = <g_Texture>;
AddressU = Wrap;
AddressV = Clamp;
AddressW = Mirror;
}s
e K SR X
?" 2 abbﬁr:‘”fﬁ ly _“"E . ”-_?.TJEL
E E E %’3&% A }*ghhi | | ?a_.-.-.
wh Sy O Gl e X
| | | et % .ﬁs \?d?
DN,




Texture Mapping: Mipmaps

» When sampling the texture for distant objects, artifacts and inefficiencies

occur due to undersampling and cache-misses (e.g. reading from a 512x512
Image to cover only 25 pixels).

» Mipmaps are a continuous series of half-sized images associated with the
texture (pyramid).

7/ Last

" submap
' is only
' one texel.

A2x32 16x16 8x8 4x4 2x2

- Each s=ubmap i=

' half the size of
the previous one.

""'--.:::_.__ / Full resolution texture map.




Texture Mapping: Mipmaps (cont’d)

» GPU picks the suitable mipmap to texture the area in question depending on
difference of UV values between pixels.

» Mipmaps are usually auto-generated by downsampling the full-resolution
texture sequentially, but they can contain totally different images too (for
special effects).

£
o B -\-‘-‘h .
Vardware

quide !

Colored Mipmaps Bilinear




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Texture Mapping: Filtering (cont’d)

» Filtering can be specified for each case differently:
» Magnification
» Minification
» Mipmapping

» Common filtering settings:
» Point: Point Min/Mag/Mip
» Bilinear: Linear Min/Mag, Point Mip.
» Trilinear: Linear Min/Mag/Mip.

» Setting texture filtering mode in HLSL.:
sampler mySampler =
sampler_state

{
Texture = <g_Texture>;
MagFi1lter = Linear;
MinFilter = Linear;
MipFilter = Point;




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Texture Mapping: Bump Maps

» Bump maps (a.k.a height maps) provide detail to geometry normals by
specifying values of normal perturbation.

» Normal at every texel is found by determining slope angle in relationship with
surrounding texels.

» Bump map normal is added to surface normal.
» Bump map is stored in a single color channel.

ls o ol - . - N L F e
fa BB e e -”™ o

——— e AT Tn i i

o e - f-:—'.ll-l--‘l- ; & mp

Rl

6 (NN g A AN ¢

-.ﬁ"l . EF‘J i’ f |'-. - "rf I

= : . - ' A o g " "

, ® oy . g 1 g r -I"

Ili Nl .‘.:F "“'.. b s ¥ m d 3 i,

[ élli.-' :-::-‘-l- " - ;h"'l_.' F "-’ 1" o l,.-":ri- " -

|:‘- AV l "'bé 11: .: ‘.I- lr-’.';/f iJ_,._ -:"'
g — :} - - [ ) 5 NS . A

I‘.‘i-'luh AN /™ P A - 5




Texture Mapping: Normal Maps

» Normal maps provide detail to geometry normals by specifying normals at
each texel.

» Normals in a normal map replace normals from vertices.

» Information is 3D and needs 3 channels (more storage than bump maps).

» Can be stored in object-space or tangent-space.

» Direction values range in [-1,1] for each axis. Remapped to [0,1] for storage.

-

- i i it - . e e WL T_—-T-““‘\
4 ¥ . e B \ P e
. - - L A -
g _ ™ . W
. :_ 1 ‘H h"—. e
- bl o N,
L""-‘ .y "-\\ l-"' :
e : _A_.h'-_..""-.H Y\
x\_‘_____ "‘I e
E E ; . AR
. e < d ™ N
! Y "‘L" 1 1 Hl"-f"-
e ) A




Texture Mapping: Per-pixel Lighting

» Normals in a normal map are commonly stored in tangent-space (the space
of the surface the texture is mapped on).

» Must transform normals to same space as light: need a object-to-tangent
space matrix (Tangent | Binormal | Normal matrix):

Texture coords: Texture coords:
[0, 1] [1,1]

Texture coord

— S tangent
—— T tangent (hinormal)
— N0|-n-|a|




Texture Mapping: Per-pixel Lighting (cont’d)

>
4

Code example (transform light to tangent space):
In the vertex shader:

// Calculate the light vector (vLightPosition is In object space)
vLightVector = vLightPosition - position.xyz;

// Transform the light vector from object space into tangent space
Tloat3x3 TBNMatrix = Float3x3(vTangent, vBinormal, vNormal);
vLightVector.xyz = mul(TBNMatrix, vLightVector);

In the pixel shader:

// Normalize the light vector after linear interpolation
vLightVector = normalize(vLightVector);

// Since the normals in the normal map are iIn

// the (color) range [0, 1], we need to uncompress them to "real

// normal (vector) directions.

// Decompress vector ([0, 1] -> [-1, 1])
T

-FanfQ \lI\InIf'nnﬁlf‘nlnr = +aoav2Dlnnrmal Tavtil norm

0.5F);

1 RVAALY VINUIL THIAAR VU RUVUI — LL;/\LLJ\IIUIIIIMI I'U/\ u

float3 vNormal = 2.0F * (vNormalColor




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Texture Mapping: Masks/General Purpose (2)

» Look-up tables:
» Pre-calculated computations or terms (e.g. acos())




Texture Mapping: Masks/General Purpose (3)

» Color ramps, remapping, color correction:

tex1D(texColorRemapR, texDiffuse.r);
tex1D(texColorRemapG, texDiffuse.g);
tex1D(texColorRemapB, texDiffuse.b);

FfinalColor.r
finalColor.g
finalColor.b




Fog

» Gradually fade colors to a background color:

finalColor = lerp(finalColor,fogColor,fogAmount)
» Fog amount calculation determines fog effect and shape:

» View-space depth

» World-space height

» Fog volumes

» Fog blend can be linear, exponential, or even a custom curve.

» In addition to the visual quality, it is a useful way to decrease rendering
distance and hide popping artifacts.




Transparency (alpha testing)

» Use alpha channel as a “cut-out mask”.

» Binary test is done on each pixel to be rendered (alpha testing):
» Is your alpha value above a certain threshold?

Yes = pixel continues rendering and goes to further stages in the pipeline.
No = pixel is killed right away.

» Pixels that fail the alpha test do not write any values to the depth buffer.
» Do not confuse with alpha blending.




Translucency (alpha blending)

v

Blend color with background by a specified amount

v

Blending amount can be constant across the object
Or read from a texture
All pixels write to the depth buffer (even those with alpha=0)

v

>




With HDR Rendering Without HDR Rendering

- =
e \ \_\‘L{‘“ e

Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Global Effects

= Shadows

= Light maps

* Radiosity

= Ambient Occlusion

= Reflections and Environment Mapping




Shadows

» Important to “stage” objects in the scene.

» Dynamically calculated: shadow volumes, shadow maps, ...etc.
» Statically baked: light maps.

» If an object is shadowed from one light, then it does not “see” it.

» A shadowed scene has:
» Light
» Shadow caster y

4 ]
=Y G

» Shadow receiver




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Shadows : Shadow Maps

» To a separate “shadow” depth buffer, draw all objects from the light’s point-
of-view.

— Stores what is visible from the light’s point of view.

» Draw objects to screen normally. For every pixel, object asks the shadow
map: do you see this pixel of me?
» Yes = Pixel is lit by that light.

» No = Pixel is shadowed from that light.

» Irrelevant of geometrical
complexity.




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Radiosity Lighting

» Tracing diffuse reflectance between scene objects.

» Can be faked in real-time by adding colored lights sampling the surrounding
environment.

» lrradiance via radiosity.

| -
| | -
--I
- ——
S
H
I I

Direct Illumination




Ambient Occlusion

» The ambient term in the common lighting formula was found to be a little bit
too simplified.

» Asingle point can receive light reflected from many surfaces.

» Areas obstructed by other surfaces are less likely to receive bounced light
rays.

» Modulate ambient term by how much indirect lighting a point can receive =
area visibility test.




Environmental Mapping: Reflections

» Reflective materials act as mirrors to their surrounding environment.
» Naturally achievable with a ray-tracer.

» Polygon projection renderers must do some tricks to achieve it.
» Environment cube maps
» Spherical environment mapping

\
”. <
A8
i
2 -
\I [ _‘\\‘ iy
\ .\" '-'-l:-"\
\ -

\“‘% \ \ Environment Map




Environmental Mapping: Cube Maps

» 6 images sampling a cube surrounding point of interest.

» Dynamic updates are relatively cheap and feasible:
» Render scene to the six sides of the cube map

Rerseen by
REIE - Camera Ray

Ray




Environmental Mapping: Spherical Mapping

» Single image sampling a sphere surrounding point of interest.
» Good for static reflections.

» Dynamic generation requires highly tessellated geometry to support curved
lines.




Image Space

= Post Processing
= Image Filtering

= Image Space Effects
* Deferred Shading




Post-Processing

» Apply additional passes of processing over pixels that have been already
rendered before.

» Purely image-based processing.

for (1=0; i<NumPixels; 1++)

{
Pixel px = Sourcelmage.Pixels[i];
CurrentRenderTarget.Pixels[1].rgbh =
(px.Color.r + px.Color.g + px.Color.b) / 3;
+

» Output result is stored in a new buffer.




Post-Processing : Image Filtering

» Application of image space convolution (spatial domain).
» Each pixel in the source image is passed through a “kernel”.
» Kernel can sample surrounding pixels within a certain “radius”.

The Convolution Operation Sequence

Sharpenin
szﬁuﬂn%
— Kemel
Mask




Filters : Sharpness




Filters : Emboss

Kifisas St f'ﬂ%‘;'ﬂll‘l
o




Filters : Blur

» Reduces noise and detall.

» Used in many effects:

» Depth of field, out of focus

» Bloom

» Fighting hard edges (anti-aliasing)
» Each pixel is averaged with its surroundings to a certain distance.
» Kernel size determines amount of blurriness.

» Apply it on a down-sampled image to achieve
even bigger kernel sizes.




Filters : Box vs. Gaussian Blur

» Kernel samples concentrate on center.
» Can be separated to two passes. 0.8




Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Other Effects : Color Remapping

» Remap colors using 3 1D textures:

pix.r = texlD(texColorRemapR, pix.r);
pix.g = texlD(texColorRemapG, pix.g);
pix.b = texlD(texColorRemapB, pix.b);

» Remap colors using 1 3D texture (volume):
pix.rgb = tex3D(texColorRemap, pix.rgb);




Screen Space Ambient Occlusion Direct Lighting Only

Screen Space Ambient Occlusion provides a rough
approximation of reakime global lumination.

Arabic Game Developer Network (www.agdn-online.com) 10/April/2009



Image Space Lighting : Deferred Shading

» Rasterize render data in
intermediary image buffers:

» Diffuse color
» Depth

» Normals

» ...elc

final image

» Apply lighting passes in
screen space
» Render light volumes
» Apply lighting in screen space




Questions?




Credits

» Sergei Savchenko
» Jean-Sebastien Perrier

» Homam Bahnassi




Thank You!




